Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 23(19): 4313-4323, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37702123

RESUMO

The growing interest in regenerative medicine has opened new avenues for novel cell therapies using stem cells. Bone marrow aspirate (BMA) is an important source of stromal mesenchymal stem cells (MSCs). Conventional MSC harvesting from BMA relies on archaic centrifugation methods, often leading to poor yield due to osmotic stress, high centrifugation force, convoluted workflow, and long experimental time (∼2-3 hours). To address these issues, we have developed a scalable microfluidic technology based on deterministic lateral displacement (DLD) for MSC isolation. This passive, label-free cell sorting method capitalizes on the morphological differences between MSCs and blood cells (platelets and RBCs) for effective separation using an inverted L-shaped pillar array. To improve throughput, we developed a novel multi-chip DLD system that can process 2.5 mL of raw BMA in 20 ± 5 minutes, achieving a 2-fold increase in MSC recovery compared to centrifugation methods. Taken together, we envision that the developed DLD platform will enable fast and efficient isolation of MSCs from BMA for effective downstream cell therapy in clinical settings.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Microfluídica , Células-Tronco , Plaquetas
2.
J Vis Exp ; (193)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-37010295

RESUMO

Human mesenchymal stem cells (hMSCs) are currently being explored as a promising cell-based therapeutic modality for various diseases, with more market approvals for clinical use expected over the next few years. To facilitate this transition, addressing the bottlenecks of scale, lot-to-lot reproducibility, cost, regulatory compliance, and quality control is critical. These challenges can be addressed by closing the process and adopting automated manufacturing platforms. In this study, we developed a closed and semi-automated process for passaging and harvesting Wharton's jelly (WJ)-derived hMSCs (WJ-hMSCs) from multi-layered flasks using counterflow centrifugation. The WJ-hMSCs were expanded using regulatory compliant serum-free xeno-free (SFM XF) medium, and they showed comparable cell proliferation (population doubling) and morphology to WJ-hMSCs expanded in classic serum-containing media. Our closed semi-automated harvesting protocol demonstrated high cell recovery (~98%) and viability (~99%). The cells washed and concentrated using counterflow centrifugation maintained WJ-hMSC surface marker expression, colony-forming units (CFU-F), trilineage differentiation potential, and cytokine secretion profiles. The semi-automated cell harvesting protocol developed in the study can be easily applied for the small- to medium-scale processing of various adherent and suspension cells by directly connecting to different cell expansion platforms to perform volume reduction, washing, and harvesting with a low output volume.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Mesenquimais , Humanos , Técnicas de Cultura de Células/métodos , Reprodutibilidade dos Testes , Fluxo de Trabalho , Diferenciação Celular , Proliferação de Células , Células Cultivadas
3.
Cytotherapy ; 21(6): 631-642, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30975604

RESUMO

In the current emerging trend of using human mesenchymal stromal cell (MSCs) for cell therapy, large quantities of cells are needed for clinical testing. Current methods of culturing cells, using tissue culture flasks or cell multilayer vessels, are proving to be ineffective in terms of cost, space and manpower. Therefore, alternatives such as large-scale industrialized production of MSCs in stirred tank bioreactors using microcarriers (MCs) are needed. Moreover, the development of biodegradable MCs for MSC expansion can streamline the bioprocess by eliminating the need for enzymatic cell harvesting and scaffold seeding for bone-healing therapies. Our previous studies described a process of making regulated density (1.06 g/cm3) porous polycaprolactone biodegradable MCs Light Polycarprolactone (LPCL) (MCs), which were used for expanding MSCs from various sources in stirred suspension culture. Here, we use human early MSCs (heMSCs) expanded on LPCL MCs for evaluation of their osteogenic differentiation potential in vitro as well as their use in vivo calvarial defect treatment in a rat model. In summary, (i) in vitro data show that LPCL MCs can be used to efficiently expand heMSCs in stirred cultures while maintaining surface marker expression; (ii) LPCL MCs can be used as scaffolds for cell transfer for transplantation in vivo; (iii) 50% sub-confluency, mid-logarithmic phase, on LPCL MCs (50% confluent) exhibited higher secretion levels of six cytokines (interleukin [IL]-6, IL-8, Vascular endothelial growth factor (VEGF), Monocyte Chemoattractant Protein-1 (MCP-1), growth-regulated oncogene-α (GRO-α) and stromal cell-derived factor-1α (SDF-1α)) as compared with 100% confluent, stationary phase cultures (100% confluent); (iv) these 50% confluent cultures demonstrated better in vitro osteogenic differentiation capacity as compared with 100% confluent cultures (higher levels of calcium deposition and at earlier stage); the improved bone differentiation capacity of these 50% confluent cultures was also demonstrated at the molecular level by higher expression of early osteoblast genes Runt-related transcription factor 2 (RUNX2), Alkaline phosphatase (ALP), collagen type I, osterix and osteocalcin); and (v) in vivo implantation of biodegradable LPCL MCs covered with 50% heMSCs into rats with calvarial defect demonstrated significantly better bone formation as compared with heMSCs obtained from monolayer cultures (5.1 ± 1.6 mm3 versus 1.3 ± 0.7 mm3). Moreover, the LPCL MCs covered with 50% heMSCs supported better in vivo bone formation compared with 100% confluent culture (2.1 ± 1.3 mm3). Taken together, our study highlights the potential of implanting 50% confluent MSCs propagated on LPCL MCs as optimal for bone regeneration. This methodology allows for the production of large numbers of MSCs in a three-dimensional (3D) stirred reactor, while supporting improved bone healing and eliminating the need for a 3D matrix support scaffold, as traditionally used in bone-healing treatments.


Assuntos
Materiais Biocompatíveis/química , Regeneração Óssea/fisiologia , Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Osteogênese/fisiologia , Animais , Reatores Biológicos , Contagem de Células , Técnicas de Cultura de Células/instrumentação , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Citocinas/metabolismo , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Poliésteres/química , Ratos Nus , Crânio
4.
Biotechnol J ; 14(5): e1800674, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30791214

RESUMO

Recently, particle concentration and filtration using inertial microfluidics have drawn attention as an alternative to membrane and centrifugal technologies for industrial applications, where the target particle size varies between 1 µm and 500 µm. Inevitably, the bigger particle size (>50 µm) mandates scaling up the channel cross-section or hydraulic diameter (DH > 0.5 mm). The Dean-coupled inertial focusing dynamics in spiral microchannels is studied broadly; however, the impacts of secondary flow on particle migration in a scaled-up spiral channel is not fully elucidated. The mechanism of particle focusing inside scaled-up rectangular and trapezoidal spiral channels (i.e., 5-10× bigger than conventional microchannels) with an aim to develop a continuous and clog-free microfiltration system for bioprocessing is studied in detail. Herein, a unique focusing based on inflection point without the aid of sheath flow is reported. This new focusing mechanism, observed in the scaled-up channels, out-performs the conventional focusing scenarios in the previously reported trapezoidal and rectangular channels. Finally, as a proof-of-concept, the utility of this device is showcased for the first time as a retention system for a cell-microcarrier (MC) suspension culture.


Assuntos
Técnicas de Cultura de Células/métodos , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Fenômenos Biológicos , Células da Medula Óssea , Técnicas de Cultura de Células/instrumentação , Separação Celular/instrumentação , Separação Celular/métodos , Citometria de Fluxo , Humanos , Células-Tronco Mesenquimais , Técnicas Analíticas Microfluídicas/instrumentação , Microfluídica/instrumentação , Tamanho da Partícula
5.
Sci Rep ; 8(1): 12481, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127526

RESUMO

Rapidly evolving cell-based therapies towards clinical trials demand alternative approaches for efficient expansion of adherent cell types such as human mesenchymal stem cells (hMSCs). Using microcarriers (100-300 µm) in a stirred tank bioreactor offers considerably enhanced surface to volume ratio of culture environment. However, downstream purification of the harvested cell product needs to be addressed carefully due to distinctive features and fragility of these cell products. This work demonstrates a novel alternative approach which utilizes inertial focusing to separate microcarriers (MCs) from the final cell suspension. First, we systematically investigated MC focusing dynamics inside scaled-up curved channels with trapezoidal and rectangular cross-sections. A trapezoidal spiral channel with ultra-low-slope (Tan(α) = 0.0375) was found to contribute to strong MC focusing (~300 < Re < ~400) while managing high MC volume fractions up to ~1.68%. Accordingly, the high-throughput trapezoidal spiral channel successfully separated MCs from hMSC suspension with total cell yield~94% (after two passes) at a high volumetric flow rate of ~30 mL/min (Re~326.5).


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Reatores Biológicos , Linhagem Celular , Filtração/métodos , Humanos , Suspensões
6.
Cytotherapy ; 17(8): 1152-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26139547

RESUMO

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) are being investigated as potential cell therapies for many different indications. Current methods of production rely on traditional monolayer culture on tissue-culture plastic, usually with the use of serum-supplemented growth media. However, the monolayer culturing system has scale-up limitations and may not meet the projected hundreds of billions to trillions batches of cells needed for therapy. Furthermore, serum-free medium offers several advantages over serum-supplemented medium, which may have supply and contaminant issues, leading to many serum-free medium formulations being developed. METHODS: We cultured seven MSC lines in six different serum-free media and compared their growth between monolayer and microcarrier culture. RESULTS: We show that (i) expansion levels of MSCs in serum-free monolayer cultures may not correlate with expansion in serum-containing media; (ii) optimal culture conditions (serum-free media for monolayer or microcarrier culture) differ for each cell line; (iii) growth in static microcarrier culture does not correlate with growth in stirred spinner culture; (iv) and that early cell attachment and spreading onto microcarriers does not necessarily predict efficiency of cell expansion in agitated microcarrier culture. CONCLUSIONS: Current serum-free media developed for monolayer cultures of MSCs may not support MSC proliferation in microcarrier cultures. Further optimization in medium composition will be required for microcarrier suspension culture for each cell line.


Assuntos
Técnicas de Cultura de Células , Terapia Baseada em Transplante de Células e Tecidos/métodos , Meios de Cultura Livres de Soro , Células-Tronco Mesenquimais/citologia , Linhagem Celular , Proliferação de Células , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...